
N93-11924

Distributed Environmental Control

Gary A. Cleveland
McDonnellDouglasSpace SystemsCompany - Space Station Division

5301 Boise Avenue, HuntingonBeach, CA 92647
(714) 896-3311 x7-0311

cleveland%ssdvx 1.decnet@mdcgwy.mdc.com

1.0 INTRODUCTION

We present an architecture of distributed,

independent control agents designed to work

with the Computer Aided System Engineering
and Analysis (CASE/A) simulation tool.
CASE/A simulates behavior of Environmental

Control and Life Support Systems (ECLSS). We

describe a lattice of agents capable of
distributed sensing and overcoming certain
sensor and effector failures. We address how

the architecture can achieve the coordinating
functions of a hierarchical command structure

while maintaining the robustness and

flexibility of independent agents. These

agents work between the time steps of the
CASE/A simulation tool to arrive at command

decisions based on the state variables

maintained by CASE/A. Control is evaluated

according to both effectiveness (e.g., how well
temperature was maintained) and resource

utilization (the amount of power and
materials used).

1.1 Motivations and Criteria

We employ five criteria in designing and
building this control system.

1) The controller is to work with the

CASE/A simulation system.
2) The architecture should introduce as

little new vocabulary as possible to describe

the systems being simulated by CASE/A and

their control. We wish to keep the usability
of the CASE/A system high, especially among

its current user community.
3) The controller must coordinate

diverse and conflicting functions among

sensors and effectors that are spatially

remote, work in a system with significant

time delays, and are subject to certain types
of faults.

4) Control of the system must degrade
gracefully in the face of several types of
faults.

5) The control architecture should be
modular so that new controllers can be

constructed to match new simulations without

changing any large part of the basic scheme.

6) The control mechanism should make

use of a parallel processing model of

computation. We do not want to eliminate the
option of a parallel implementation.

1.2 General Description of this Work

It is fairly straightforward to control a given
device at about the level at which one would

describe a thermostat or proportional control.
One uses rules such as, "When the

temperature gets above a certain point, turn
on the air conditioner," and, "As the vibration

increases, decrease the rate of spin by an

amount depending on the severity of the
vibration." These examples and our

viewpoint are meant to be consistent with the
control found in the field of robotics; sensors

provide input, effectors receive output,

controllers map the former to the latter.

This effort takes a more generalized view of

sensors and effectors, introducing explicit

levels of control and allowing control to be
described uniformly at all levels.
Communication between the control levels is

carried out using the same set of constructs as

are the sensing and effecting at the lowest

level. In effect, a higher level controller
"senses" the information that the lower level

controllers make available. The introduction

of multiple levels of control is the key factor
in being able to address control issues that

19

span several sensors, and in being able to

produce coordinated control over a number of
effectors. This abstraction also provides an

ability to step away from the hardware a bit

and deal with the control problem in an
intuitive manner. For example, suppose a
pair of sensors measure air pressure and the

partial pressure of oxygen, respectively. If
our control problem is built around the

percent of oxygen in the air, then the control
algorithm will be made less clear by the extra

computation. We are proposing that this
extra translation be extracted from the basic

control algorithm. Similarly, levels of control
allow sensors such as "AirLock Nominal" to be

constructed. Such a "virtual" sensor might
look at a half-dozen other sensors (both

virtual and hard sensors) using a complex

algorithm before actually determining that
the airlock status is nominal. In both cases,

the translational and analytical work is

separated from the control algorithm that
uses the analysis.

1.3 Relationships to Other Work
The official description of the CASE/A

simulation system is found in the CASE/A
User's Manual [CASE/Aa] with additional

insights and details provided by the

Programmer's Manual [CASE/Ab]. Of special

value in understanding our work is the
detailed description of how CASE/A handles

time steps.

More to the point of our effort, the reader

should consult the work on subsumption

architectures at MIT ([Brooks], [Connell]) from

which we have adopted much of our
communication model and protocol. This
communication scheme has been modified to
address some of the same issues as

Henderson's work ([Henderson84],

[Henderson90]). We perceive Henderson's

work as an attempt to rise above limitations

in the MIT work coming from the low level at
which those systems are built. We have

adopted Henderson's scheme as far as our
simple sensors and effectors made desirable.

We contrast the complexity of Henderson's
vision sensors to that of our thermometers

and air pressure gauges.

One may note the similarity in some aspects
to neural networks [Hopfield]. Three

comments pertain. First, our graph of agents

does employ a communication protocol similar

20

to that used between neurons. Second, the

model of computation carried out by our
agents leans more towards the symbold than
that found in neurons (making use of stored

state variables, for_ example.) Third, it is not

our intention to endow our agents with any

learning potential.

Mention should also be made of experiments

in the area of reactive intelligent control such

as performed by Agre and Chapman [Agre].
By using the building blocks described below,

our long term goal is to be able to construct
reactive controllers which use knowledge at a

level similar to that found in Agre and

Chapman's Pengi system.

1.4 Organization of tile paper.

Section 2.0 presents a low level view of
communication with the CASE/A simulation
tool. Section 310 describes the lattice of

controlling agents and their functions. Section

410 describes the evaluations to be performed
on the simulation runs controlled using this
architecture.

2.0 COMMUNICATING WITH THE CASE/A
SIMULATION SOFTWARE

2.1 The CASE/A Simulation Software.

The Computer Aided System Engineering and

Analysis (CASE/A) modeling package is an
Environmental Control and Life Support

System (ECLSS) and Active Thermal Control

System (ATCS) analysis and trade study tool.
The p_ickage is written in FORTRAN and

supports the construction and analysis of
ECLSS and ATCS models by offering primitive

units such as pumps, heat exchangers, etc.,
that can be linked together to form the

desired models. The primitive units are
referred tO as components and the links
between them, for the purposes of this

presentation, are called streams. Streams
themselves are discussed in terms of the

constituents that flow through them. Oxygen,
water, and other materials are examples of

constituents. The properties of streams are
also of interest. The most often discussed

properties are temperature and pressure.

Each component in a CASE/A model has a
function that computes, at every time step,

the values for the output" streams given the
values found at the input streams. The

CASE/A package visits the various

components in a model, finding new values
for the streams. Naturally, the output

streamsof some componentsare the input
streamsfor others. Sincethereare cyclesin
the models,CASE/A will visit somestreams
and componentsrepeatedly. While so doing,
CASE/Ais attemptingto find a solutionthat
satisfiesall of the interconnectedcomponents.
Somecomponentsmay be visited numerous
times on a given time step before
convergenceis achieved.

CASE/A also supports its own version of
controllers that can be linked among the
streamsand componentsand which supporta
languagesimilar to a zero-register(stack-
based) assemblylanguagefor forming and
carryingout control decisions. Unfortunately,
thesecontrollerscanonly senseonevalueat a
time and can only affectone valueat a time.
This eliminates the possibility of any
straightforward scheme for coordination
amongsensorsor effectors. Thesecontrollers
do, however,providethe basicsof the model
of communicationbetweenCASE/A and the
controllerwe are building.
2.2 Communicating with CASE/A
As was hinted in the previous section, the

streams (constituents) in CASE/A provide a
natural correspondence to the sensors that we
desire to create. The components provide our

vocabulary of effectors as well as providing
more sensors of interest (e.g., pump flow

rate). As effectors, we may set a pump flow
rate based on the temperature of a water line.

It remains only to create an import/export
mechanism enabling the values to be moved
between the existing CASE/A package and the

newly created controller. It turns out that for
the VAX/VMS system where CASE/A resides,
communication between FORTRAN and the

controller's home language of Ada is

straightforward.

The timing of the communication is also

straightforward but still bears discussion. To
control a physical system, we would be faced

with accepting and reacting to asynchronous
sensor signals. To the degree possible, we
wish to work with this model even though the

CASE/A system works in discrete time steps.
CASE/A will transfer program control to the

controller only between those time steps. The

resulting communication scheme has CASE/A

passing a number of sensor signals to the
controller all at the same time but in no

particular order. Because the controller

processes these signals using an asynchronous
model, it sometimes happens that control

(effector) signals are generated and then
overridden before reaching a final form.

Overrides, as discussed below, are one form of
communication between control agents. After

all the control signals have been generated

and have stabilized, the packet of signals is
sent back to CASE/A for another time-step
iteration.

3.0 THE AGENT ARCHITECTURE

3.1 Control Agent Description

The primary unit of control in our
architecture is the agent as depicted in Figure

1. Each agent has ports to accept sensor input
and to produce effector commands. Command

mappings from the sensors to the effectors

are produced by one of a number of
algorithms available to the agent. Each such
algorithm may be viewed as one part of a

production (rule-based) system. These

control algorithms are local to the agent and
operate independently from those of other

agents. Each agent can also maintain memory
of past sensor values and effector commands

so that trends may be noticed and complex
actions requiring a schedule of sub-actions

may be effected. The set of sensor ports and
the set of effector ports are redundant in that

there may be several means of deriving the
same information or issuing the same
command from different subsets of the

available ports. Coordinated behavior is
achieved spatially by using connections

between the ports as communication lines and

temporally by utilizing the internal memory
of the agents.

._ Output Signal

Agent:

(Pattern1 :=> Computation1,

Pattern2 :=> Computation2,

...

PatternN :=> ComputationN)

Memory_Summary:
Accumulators,

Interval,

Accumulating Function

Inputs: Sensor Signals and Commands

Figure]: Structure of Agents (with Memory)

21

3.2 Coordination of Agents

All agents are arranged in a tangled hierarchy
(directed acyclic graph) with the sensor and

control signals traveling up through the
graph. Topologically, this is identical to

Brooks' networks of subsuming agents and
still similar to ttenderson's hierarchy of logical

sensors. All the control agents below a given
agent are treated as sensors while all the

agents above a given agent are treated as

effectors. The leaves of the graph represent
the actual sensors (as found in the CASE/A

simulation) while the roots of the graph

represent the actual effectors. Functionally,
this arrangement is also simii_ir to

Henderson's work because the higher level

agents have control (through overrides and
subsumption) over those at lower levels. The

difference lies in the arrangement of
connections in the graph.

The network of agents is static during a
simulation run. Dynamic behavior is obtained

from this static net when a given agent
chooses to invoke a different algorithm for

sensor analysis and effector control signal
generation. This parallels Henderson's work

with the important distinction that sensor and

command signals are combined in one
communication channel.

Generally, the leaves of the graph directly

relate to sensors whose signals are
transmitted through the interface from the

CASE/A simulation. Control is accomplished
by manipulating these sensor signals as they

pass up through the graph. Signal
manipulation takes the form of computing
new signals to pass on from those received.

Some of the signals received will correspond

closely to physical values produced by the
simulation while others will be better

interpreted as control or context signals. The

two types of signals are treated alike.

While these "control signals" are treated the

same as the "sensor signals," one may view
their treatment from several viewpoints. The
first is that the controlling agents reside in

the agent network "above" those agents that
they control. The agents higher in the graph

produce control signals that override the

signals generated by the lower agents. This
view corresponds to subsumption as put forth

by Brooks et al. The other view is that the

controlling agents reside "below" the

controlled agents. By providing different
inputs, the lower ,level agents can influence

the behavior of the upper level agents. As

with Brooks, we prefer that the higher level
agents might have knowledge of the graph

below them but not that any lower level
agent should ever have knowledge of the
graph above.

Depending on current and previous sensor

(and control) values, various computations
may be used tO create the signals that will

continue up the graph. The choice of
algorithm may also depend upon estimates of

: L_ : :

confidence in the signals being passed in.

Actual algorithm selection is performed by a
simple pa=ffern match against current input
and stored values.

3.2.1 Sensing
Agents sense--declared numeric values within
the CASE/A simulation. All sensors are

defined in terms of the structures (usually

constituents Of streams) that CASE/A already
maintains although communication among

agents depends on slightly different streams.
Using this scheme, three more complex
sensing behaviors can be constructed.

3.2.1.1 Grouping

Homogeneous groups of identical sensors in
parallel Can be used as the simplest means of
olotaining fauit-t6ierance: Most of the time a

group _ such sensors is viewed as a single
sensor, producing a single reading derived

from the combination (usually the average) of
the readings of the individual sensors. A

complex sensor of this type needs to have
some faciilty for dealing with failed
individuals. The reading from the

combination of sensors can usually be
assigned a higher confidence value than that

of any of the individuals.

3.2.1.2 Fusion or Virtual Sensing

Heterogeneous groups of sensors may also be

constructed and represented as a single,
combined sensor as shown in Figure 2. This
type of complex sensor can produce a "sensed"

value derived from but not directly related to
any physical measurement. Most of the

"control" agents take this form.

3.2.1.3 Integration, Trends, and Time A_;erages

Sensor agents with memory Can store past
readings in order to produce values for totals,

trends, and averages over time. The outputs

22

=

m

J

m

E
m

from these sensorsare referredto as control
signals for the sake of uniformity. In fact,
these signals are usually piped straight to the

input of another agent that treats the signal

as another type of sensor.

f Virtual Outpul Signal

Composed Agent:

ComposilionFunction)

Inputs: Sensor Signals and Commands

Figure 2: Agent Composition for Coordinated Control
and Virtual Sensing

3.2.2 Effecting

Carrying out the control decisions is carried

out by communicating those decisions to
CASE/A, in the form of numeric values

corresponding to desired settings for

component attributes (e.g., flow rate of a
pump). Most of the important pieces needed

for coordinated control have already been
introduced with the discussion of the
controllers above. It remains to show how

those controllers can be used to carry out

complicated behaviors.

3.2.2.1 Coordinated actions

3.2.2.1.1 Among Agents

Coordinating actions among agents is
straightforward given the arrangement of
controllers in the graph as described above.

A controlling agent merely outputs a value
that signals a certain context has been

entered. The agents being coordinated must

have this context preprograrnmed as one of
the patterns to which they respond. We are

again relying upon experience to show

whether the number of such patterns is
prohibitive and whether coordinated actions

will need to show more flexibility than can be
achieved with the scheme just outlined.

An alternative means of rendering such
coordination would be to have agents watch
each others' command streams and act

accordingly. This second scheme eliminates
the need for the (extra) coordinating agent

but even more strongly begs the question of

pattern complexity. Probably, the domain
and the specific behavior being programmed
will determine which method is used.

3.2.2.1.2 Through Time

For coordinating actions through time we rely

upon the sensor agents' capability for
collecting accumulated data such as averages
and trends. Such sensors can "count time" as

well as watch the bel_avior of sensed values.

Agents already have the ability to respond to

changes in the sensed environment and can
thus respond to other agents' actions (e.g.,

after Agentl starts the motor, Agent2 should

open the valve). The agents with the time
memory will allow scripted behaviors among

one or more agents. A scripted behaviors
resides within a single agent and is carried

out when that agent sends appropriate signals

(just as all others) to other agents. For
example, Agentl and Agent2 should both turn

on motors for five minutes. The beginning

and end of the five minutes is called out by
Agent3, possibly by claiming to sense an

imbalance in a hydraulic line that goes away
after five minutes.

3.2.2.2 Virtual Effectors

Agents that are somewhat removed from the

actual control of the components accessible
from CASE/A may be referred to as "virtual

effectors." An example is a controller that is
ii I •

programmed to raise the temperature" but
does not have direct access to the CASE/A

program. Such a controller should be in a
position of communicating to some set of
heaters, fans, lights, etc that can be
coordinated according to the current set of

tradeoffs. In fact, this is a complementary
view of the coordination of sensors mentioned

above. In one, the system tells the sensors
what to be sensitive to and in the other, we

view this from the coordinating agent's
vantage of working towards some purpose.

3.3 Fault Tolerance

Fault tolerance is becoming one of the most

important issues in controlling complex

systems. For large systems, it is not practical
to try to eliminate all faults. For this reason,

nearly all fault tolerance arises from the
introduction of redundancy into the system.

The basic scheme is to have one part of the
system stand in for another part when it fails.

This leaves us with the two questions
concerning what parts may fail such that the

23

system still functions reasonably and how is it
that this "reasonable" or "acceptable" behavior
is achieved.

For the current version of the control system,
we address faults in the CASE/A sensors and

effectors only. When a sensor fails, it stops
broadcasting signals of any kind. When an
effector fails, it does so by acting as though it

were receiving random commands or by

"sticking" to either a maximum or minimum
command value We assume the control

• =iS •

system components themselves to be above

suspicion. As a further simplification in the

first implementation, we assume that there
exists some diagnostic program for the
sensors that can tell us which sensor is failing.
This allows us to concentrate on the actions

the controller should take given a (single)
failure rather than revisiting the subject of

"automated diagnosis. With this amount of
information, we are also capable of quickly

inferring faults in the effectors when they
occur. Again, our emphasis is on the
treatment of these faults more than the

location. It may be that in sortie cases we can

not specifically locate a fault but can take

steps to work around it.

3.3.1 Sources of Redundancy

Two of the forms of redundancy that the

system uses have already been mentioned•
The first is the parallel replication of identical

sensors. Assuming that only one sensor fails
at a time, we can always achieve a reliable

reading. We still lose information, of course,
with each loss of a parallel sensor. The

second form of redundancy is buried within

the coordinating controllers. The coordinating

agent must shift the control commands from a
failed effector to those still working. For

example, if a heater fails, one might turn a fan
down in order to conserve more of the

available heat.

Other forms of redundancy are also

exploitable. Given that the controllers are
able to carry out sequences of actions through

time, one may rely upon the inertia of the

system to achieve what an effector normally
would. When a water pump fails, one may

use the water stored in a holding tank for a

fixed amount of time.

3.3.2 Sensors

Because of the way sensor signals are

processed through a pattern match and then

computation, it is possible to invoke different
processing algorithms based on the

availability of a sensor signal as well as based

on the signal's value. When a sensor fails,
those controllers that rely on the signal switch

to contingency algorithms or get overridden
by controllers designed to watch for just such

an occurrence• In many ways, the lack of

signal from a sensor is treated exactly as if
the signal values were out of some range; new

action is triggered.

The one truly unusual way that sensors may
be used in this whole architecture is to make

use of the "predictive" properties of those

controllers that have memory for charting
averages or trends. With the assumption that

an average or trend will continue, a controller

may issue commands for some time based on
predicting what the important signals ought
to be. This behavior is an example of using

the system inertia for sensing purposes. In
fact, this behavior may be invoked even
without loss of a Sensor.

3.3.3 Effectors

The one comment that remains to be made

with respect to the effector is in addressing

diagnosis. It will sometimes be the case that

a sensor will begin to report unbelievable
values while still checking out as operative.
In this case, the system must identify the

effector that is malfunctioning. This will be a
non-trivial chore as several effectors are sure

to affect any given sensor. Possibly by

modulating the control values sent to the
effectors, the site of the malfunction can be

deduced. Another promising technique is that

of set covering. Even if we can only pare

down the list of possible failures, that may be
enough to allow the controllers to use the
operational effectors to offset to ill effects of
the failed effector.

3.4 An Example
The example control network that we return

to repeatedly is that of a thermostat• Despite

its simplicity, the thermostat can be used to
demonstrate most of the interactions we face.

Supposing we have a thermostat connected to
a thermometer for a sensor

(Thermostat Sensorl) and a heater for an

effector as shown in Figure 3.

24

i oAsE,AE.ectorsvia,ote aoe.eate.I

I II I1 1
f

L Thermometer Fire Alarm JCASE/A Sensors via Interface

Figure 3: Successive Overrides of Control Signal

The behavior of the thermometer is to hold

the temperature at approximately 25°C. The
basic controller for the thermostat works

under a control law expressed in patterns and
commands as shown in Table I. Granted, this

control law may result in an undesirable
oscillation from one output command to the
other.

Pattern: Output

Thermostat_Sensorl < 25 ::r, ON(50%)

Thermostat_Sensorl >= 25 :::, ON(0%)
Table I. Simple Control Law
Assuming that 50% of the heater capacity is
sometimes insufficient to keep the area warm,

we see that our design is not finished. We

decide to add a second control agent which
provides no output signal until the area we

are warming becomes thoroughly cold. Under
these conditions, the second agent overrides

the signal of the first. The second agent has a
control law similar to the first as is shown in
Table II.

Pattern: Output
Override_Sensorl < 5 =:, ON(100%)
Override_Sensorl >= 5 :::> Nil
Table lI. Override Control Law

Obviously, this capability could have been

included in the control law of the first agent.
That it was not is due to our notions of

modularity. When circumstances change
significantly (e.g., water in the room is about

to freeze), it is appropriate that another

controller watch for the change and take
appropriate action. An example of a more
significant change would be the presence of a

fire in the area. An additional agent is
introduced to monitor the fire alarm.
Alarm_Sensorl referenced in the control law

shown refers to the Fire Control agent's first

sensor. When a fire is spotted, the heater is
turned off as any electrical appliance should
be. This law is shown in Table IlL

Pattern: Output _
Alarm_Sensorl = OFF =;> Nil

Alarm_Sensorl = ON =::, On(O%)
Table Ill. Fire Alarm Control Law

We note that the actual implementation of the

override function is carried out by the Heater

agent which communicates through the
interface to issue commands directly to

CASE/A. The Heater agent contains a control
law that prefers the override signals (if

present) to the basic command signal. This
agent's control law is shown in Table IV.

Pattern: Output

Heater_Sensor3 _ Heater Sensor3
Heater_Sensor2 :¢, Heater Sensor2

Heater_Sensor] :¢> Heater_Sensor]

Table IV. The presence and absence of signals
determines behavior.

As a last note, we comment that this entire

complex controller for the Heater can be

encapsulated by another agent with two

sensor inputs and one effector output.
Although we may not have landed on the
exact control laws that we need, we have built

the structure needed to support the behavior
necessary. We have also built this structure

incrementally and in modular form that can

be repeated and further built upon. If

modifications are necessary, they should be
also well-contained.

4.0 EVALUATION OF THE ARCHITECTURE

4.1 Effectiveness of Control

Part of any experiment must be an evaluation
of the results of the experiment. In our case,

this may be roughly voiced as, "Have we

provided a sufficiently robust and realistic

control that the users of the CASE/A system
have benefited significantly?" We may also

ask if the results of this experiment might
apply to other domains as well. It has been

our design goal to ensure that they do. Since
all of the values and control parameters are

numeric, the effectiveness may be measured
using standard statistical measure. Due to the
unavailability of these measures for other

control systems and architectures,

comparisons may not be possible.

4.1.1 Setpoint Accuracy

The primary criterion of our control system
behavior must be, "Does it do what we told it

to?" Given a list of setpoints for the values in

the system, are we able to control the system
so that those values are at or near those

setpoints? Does this remain true over time?

25

4.1.2 Pred|etlon and Anticipation

Is there a means of informing the system of a

major change of context or of operating mode
such as harvesting a crop in a plant chambe_r?

How well does the system cope with this?

How large a disturbance can it handle?

4.2 Resource Utilization

Given that the system is behaving properly or
at least acceptably (i.e., within some limits),
we wish to observe the cost of the behavior in

terms of resource consumption.

4.2.1 Resource Usage and Local Optimization

Once an acceptable behavior has been
achieved it should be possible to make small

changes to the system's behavior and

measure the change in terms of resource
utilization. Typically, resources will include

power, crew time, and materials (oxygen,

water, etc). Both types of resource trade-offs
can be addressed using statistical decision
making tools.

4.2.2 Resource Trade-Offs

Some importance or relative cost for the

various resources must be assigned since

there will be a number of control strategies
meeting the system requirements but using
different amounts of the various resources.

In this case, time must also be considered a

resource as some tasks may be carried out
with less material commitment if done more

slowly. Within the limits of parameter

perturbation, the control system can be used
to investigate resource trade-offs. We are not

attempting to automate the more involved

notion of trying out entirely different control
strategies.

If the behavior of the system is specified

within relatively large intervals, it should also-
be possible to trade the system effectiveness

for resource conservation. For example, if a

temperature can be held on the low end of its

acceptable range, we may be able to avoid
using a heater. This might be accomplished

by pumping waste heat from the living
quarters and saving electrical power both in

avoiding use of the heater and in avoiding
excessive use of coolers elsewhere in the

environment.

BIBLIOGRAPHY

[Agre] Agre, Phillip E. and David Chapman,

"Pengi: An Implementation of a Theory of

Activity", Proceedings of the Sixth National

Conference on Artificial Intelligence, Morgan
Kaufman Publishers, 1987.

[Brooks] Brooks, Rodney, "A Robust Layered

Control System for a Mobile Robot, Journal of
Robotics and Automation, March 1986.

[CASE/Aa] Integration Analysis CASE/A

User's Manual, Sept. 1989, McDonnell Douglas
Report MDC W5074-4.

[CASE/Ab] Integration Analysis CASE/A
Programmer's Manual, Aug. 1990, McDonnell
Douglas Report MDC W5146-3.

[Connell] Conneli, Jonathon, "A Colony
Architecture for an Artificial Creature," MIT

Tech. Report AI-TR 1151, 1990.
[Henderson84] Henderson, Thomas and

Esther Shilcraft, "Logical Sensor Systems," in

Journal of Robotic Systems 1(2), pp 169-193
(1984), John Wiley & Sons, Inc.
[Hendersofigo] Henderson, Thomas and Rod

Grupen, "Logical Behaviors," in Journal of

Robotic Systems7(3), 1990, John Wiley &
Sons, Inc.

[Hopfield] Hopfield, J.J. and D.W. Tank,

"Computing with Neural Circuits: A Model,"
Science Vol. 233, Aug. 1986.

26

